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Bond percolation in two-dimensional quasi-lattices 
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$: Department of Physics, Brandeis University, Waltham, MA 02254, USA11 
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Abstract. A renormalisation group analysis of bond percolation in Penrose lattices (the 
kite-dart lattice and the rhombi lattice) is presented. The critical percolation probability 
and the correlation-length exponent are estimated. 

1.  Introduction 

Quasi-lattices are ordered structures that do not show any translational order but have 
a bond-orientational order (Levine and Steinhardt 1984, 1986, Socolar and Steinhardt 
1986). Since they are situated just between periodic crystals and glassy systems, various 
physical properties might be different from those of crystalline or glassy systems. 
Among others, an important question is whether the quasi-lattice belongs to the 
universality class of periodic lattice concerning phase transitions. In this paper we 
investigate the bond percolation problem in two-dimensional quasi-lattices. As a typical 
example of quasi-lattices, we study two types of the Penrose tiling: the rhombi ( R )  

lattice which is made of thin and thick rhombi with single and double arrows on their 
edges and the kite-dart (KD)  lattice which is made by kite and dart tiles (Penrose 1974, 
Gardner 1977, de Bruijn 1981: see appendix for typical structures). Besides the edges 
of tiles we include some diagonals of each tile as bonds. Using a decimation renormali- 
sation group method which utilises the unique geometry of the quasi-lattice, we locate 
the critical surface for percolation in the parameter space and determine the correlation- 
length critical exponent. 

In § 2, we introduce an approximation scheme for the decimation transformation 
of a local network which appears in the quasi-lattices and demonstrate its effectiveness 
for the square lattice. In § 3, we examine the KD lattice and the R lattice. We derive 
the renormalisation group equations which relate the R lattice to the K D  lattice and 
vice versa and give the numerical result. Section 4 gives the concluding remarks and 
a comparison with a recent computer simulation (Lu and Birman 1987). Typical 
patterns of the quasi-lattices are included in the appendix. 

2. Decimation for a local network 

We consider a part of the network illustrated in figure l ( a )  which consists of five 
lattice sites and four bonds. In the decimation transformation the central site 0 is 
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decimated and the local network figure l ( a )  is transformed into figure I(b) which has 
four sites and five bonds. By taking the succeeding application into consideration we 
assume that bonds 0-1,O-2,0-3 and 0-4 in figure l ( a )  are unblocked with probability 
a, b, a and c, respectively, and bonds 1-2, 2-3, 3-4, 4-1 and 2-4 in figure l (b)  are 
unbroken with probability e, e, f; f and g,  respectively. In the decimation transforma- 
tion, the probabilities e, f and g are to be determined as functions of a, b and c, 
e = e ( a ,  b, c) ,  f = f ( a ,  b, c)  and g = g(a, b, c) ,  so that all connections between sites in 
the cell are faithfully represented. There are four distinct classes of connections between 
four sites in figure 1 ( b ) :  

1 : (1-2), (3-2) 2:(1-4), (2-4) 3 :  (1-3)  4 :  (2-4). (2.1) 

We denote the probability that the pairs of sites are connected by A , - A 4  in figure l ( a )  
and by rl-r4 in figure l (b) .  It  is easy to see that these probabilities are given by 

A I  = ub A2 = ac A3 = a 2  A 4 =  bc (2.2) 

r = 1 - ( 1 - e ) [  1 - ef2( 1 - g )  -fg] 

r2 = 1 - ( 1 -f)[ 1 - e 2 f (  1 - g ) - eg ] 

r3 = 1 - ( 1 - e )  ( 1 -f)[ ( 1 + e )  ( 1 if) - 2efgl 

r4= 1 - ( I  -ef)’(l - g ) .  

and 

(2.3) 

The transformation would be exact if these probabilities are matched for the four 
classes ( A t  = r, for all i = 1-4). Since it is generally impossible to satisfy all four 
equations we introduce an approximation scheme for the determination of e, f and g 
as functions of a, b and c. We use the following three equations for this purpose: 

A l = r l  n2 = rz + A ~  = r, + r4. (2.4) 
This set of equations has an advantage because when a = b = c this reduces to a set 
of two equations for two unknowns e =  f and g, which always have solutions in the 
range 0-1. Equation (2.4) does not always have solutions for arbitrary values of (a, b, c )  
between 0 and 1 .  In the domain of (a, b, c) ,  where (2.4) does not have a physical 
solution, we determine ( e ,  f; g )  by minimising 

Note that the weight is given to reflect the number of connections in each class. 

2 

L 

( a )  l b )  

Figure 1. A local network ( a )  before and ( b )  after the decimation. The circles are lattice 
sites and the full lines are bonds between sites. The open circle in ( a )  is decimated. 
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To see the effectiveness of the treatment introduced above, we apply it to the square 
lattice illustrated in figure 2. We assign the probability of being unblocked, k, to the 
nearest-neighbour bonds and I to the next-nearest-neighbour bonds alternately placed. 
In each successive transformation, we decimate the sites without the diagonal bonds 
attached (these are denoted by the open circles in figure 2). To this end the local 
network (figure l (b) )  is fitted into the sublattice of the diagonal links with the 
probabilities ( a ,  b, c)  all equal to k. Let us first take a new bond k' in the inflated 
square lattice. Since it is always shared by the two squares, it has the contributions 
f (  k, k, k ) (  = e( k, k, k ) )  from both squares. The original diagonal bond 1 also contributes 
to k'. The new diagonal bond I' is simply determined by the diagonal of the local 
network and thus given by g( k, k, k ) .  Therefore we obtain the following renormalisation 
group equations: 

k ' = 1 - ( 1 - f ) 2 ( l - l )  l ' =  g. (2.6) 
The resulting critical surface is shown in figure 3. The critical percolation probability 
of the square lattice for 1 = 0 is k, = 0.423, to be compared with the exact value k,  = 0.5 
(Sykes and Essam 1964). The non-trivial fixed point F is at ( k ,  I )  = (0.3329,0.1868). 
Near this fixed point, equation (2.6) is linearised as 

0.7344 0.8204 k - kF (::I;) =( 0.9710 0 )( 1 - 1 , ) -  (2.7) 

The largest eigenvalue of the above matrix is A,,,= 1.306, which gives the critical 
exponent 

- 1.2079. up=-- 
ln A 

In Amax 

This should be compared with the exponent ! known in the literature (den Nijs 1979, 
Eshbach et a1 1981). From these values of k,  and u p ,  we find that our method gives 
a decent estimate of the characteristics of the critical behaviour. 

We should note here that for the square lattice one could use a better scheme in which 

d t 2  E 2(A1 -r1)2+ 2(A, (A3 -T3)'+ (A4- rJ2 (2.9) 

Figure 2. The square lattice with alternative next-nearest-neighbour bonds: k and I are 
the probabilities of nearest- and alternative next-nearest-neighbour bonds being unblocked, 
respectively. The lattice sites denoted by the open circles are to be decimated. 
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I\ 

Figure 3. The critical line on the ( k ,  I )  plane for the square lattice. The intersection of the 
critical line with the axes determines the critical bond percolation probability of the square 
lattice with only the nearest-neighbour bonds. The non-trivial fixed point is denoted by F. 

is minimised to determine f and g for all values of k instead of (2.4). This method 
yields a non-trivial fixed point at (0.4797,0.1343), which gives the critical exponent 
vp = 1.3000, a remarkable agreement with the known exponent. However, it gives the 
‘trivial fixed point’ at (1,0.156) instead of (1, 1) (the other one is at (0,O)). Although 
this still represents the perfect percolation and thus is conceptually of no inconsistency, 
when applied to the quasi-lattice, the trivial fixed point does not represent perfect 
percolation. Thus this method is not acceptable. 

3. Quasi-lattice 

Let us define the bond occupation probabilities k , - k ,  for the K D  lattice and r,-r4 for 
the R lattice as follows: 

i k,: short diagonal of kite 

r , :  single-arrowed edge 
rz :  double-arrowed edge 

r,: short diagonal of thin rhombus 
r,: long diagonal of thick rhombus. 

(3.1) 

k , :  short edge 
k 2 :  long edge 

k,: short ‘diagonal’ of dart 

The decimation transformation of the quasi-lattices can be done by the successive use 
of two ‘half-inflations’ (Aoyama and Odagaki 1986, Henly 1986). One of them (which 
we denote by an operator 9;) ‘inflates’ a K D  lattice to an R lattice and the other (9:) 
‘inflates’ an R lattice to a K D  lattice. When these two operations are combined, they 
give transformations within the same type of quasi-lattices: 

We shall write down the renormalisation group equation for the decimations 9; and 
9; separately and then combine them according to (3.2) to obtain the transformation 
for 9; and 9:. 

9:=9;9: $E= (3.2) 



Bond percolation in two-dimensional quasi-lattices 4989 

9;: this transformation is illustrated in figure 4. A local network consists of a dart 
and two halves of kites, which becomes a thick rhombus. The correspondence of the 
probabilities with the local network of figure 1 ( a )  is a = k ,  , b = k2 and c = k , .  In 
contrast to the square lattice case, a renormalised bond is not always shared by a 
unique number of local networks. For example, take a bond r{  in the inflated lattice. 
Besides the contribution of k,  (which always exists), it has a contribution of e twice 
if it is shared by the two local networks, i.e. two thick rhombi (we call this case ( 1 ) ) .  
Then, r {  is given by r {  = 1 - ( 1  - e ) * (  1 - k,) ,  e = e(  k , ,  k 2 ,  k 3 ) ,  If the r {  bond is shared 
by a thick rhombus and a thin rhombus (case (2)), r{ = 1 - ( 1  - e ) ( l  - k,) .  If it is shared 
by two thin rhombi (case (3)) ,  r {  = k, .  Similarly there are three cases for r ; .  We 
determine r {  and r ;  by taking the average over the cases (1)-(3) using the probability 
of occurrence of each configuration P?’(j = 1-3),  which has been calculated previously 
(Aoyama and Odagaki 1986): 

(E?) = (4,, 2d2, 0 )  

r {  = 4,[1 - ( 1  - e ) ’ ( l -  k4)]+242[1 - ( 1  - e ) ( l -  k, ) ]  +0k4. 

(PX’) = (4*, w3, 44) (3 .3)  

(3.4) 
The ‘diagonal’ bonds r; and r; are simply determined by the corresponding bonds, as 
is evident from the half-inflation rule (figure 4). Thus we arrive at the following 
renormalisation group equation: 

where 4 = (8- 1)/2. Thus, e.g., the probability r{  is given by 

ri = 1 - ( 1 - 24e  + 4 3 e ) (  1 - k4) 
r ; = 1 - ( 1 - 2 4 ~ + 4 ’ f Z ) ( 1 - k 2 )  

r; = k ,  
rl, = g. 

Note that arguments for the functions e, f; g are ( k ,  , k 2 ,  k3) .  

(3 .5)  

Figure 4. The half-inflation 9;  which transforms the K D  lattice to the R lattice. 
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9;: as illustrated in figure 5, the relevant local network consists of a thin rhombus 
and two halves of thick rhombi, which becomes a kite, and a = r l ,  b = r2 and c = r3 in 
(2.2). For the bonds ki and k i ,  we need the average procedure using the probabilities 
P$’(j  = 1-3) of the bond being shared by (1) two kites, ( 2 )  a kite and a dart and ( 3 )  
two darts. These are given by (Aoyama and Odagaki 1986) 

(PPI)) = (43, w2, 0) (PY:) = (243,  244, 4 3 ) .  (3 .6 )  

After a simple analysis, we arrive at the following renormalisation group equations: 

k: = 1 - (1 - 24f+ 43f)( 1 - r2 )  

k; = 1 - ( 1  - - 2 4 e + ~ $ ~ e ~ ) (  1 - r4) 

kj = r ,  

ki = g. 

(3 .7)  

The arguments for e, f; g are ( rl , r 2 ,  r 3 ) .  
We analysed (3 .5)  and (3.7) numerically and found that they exhibit a typical 

percolation transition. The critical surface on the (rl  , r2 )  plane is illustrated in figure 
6 for various values of r3 and r4. Most features of this critical surface agree with the 
topological properties of the R lattice, which are obvious from the inspection of a large 
sample of the lattice. ( i )  The critical surface passes (ri) = (0, 1,0,0). This is in 
accordance with the fact that the links rz cannot form an infinite network by themselves. 
(ii) For r3 = 1, r4=0, it stays within the ( r I ,  rz )  plane with O <  r l ,  r2< 1 ,  because the 
links r3 do not form an infinite network. The critical surface intersects with the line 
rl = r 2 ,  r3 = 0, r4 = 0 at rl = r2 = 0.410 which is the critical percolation probability of the 
R lattice when one type of bond exists only along the edges of the tiles. 

The critical surface also passes the point ( r l )  = (1, 0, 0,O). This contradicts to the 
observation that edges with a single arrow seem to form an infinite network by 
themselves. This is somewhat expected, since the approximation scheme introduced 

l b l  

Figure 5. The half-inflation 9: which transforms the R lattice to the K D  lattice. 
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rl rl 

Figure 6. The critical lines on the ( r ,  , r z )  plane for the R lattice: ( a )  for r ,  = 0, 0.25, 0.5, 
0.75 and 1 when r, = 0, ( b )  for r, = 0, 0.25, 0.5 and 0.75 when r ,  = 0 (for r, = 1, the critical 
surface passes the origin). 

in 0 2 always degrades the connection between sites 1 and 3, namely bonds rl in this 
application. The present approximation is not good in the vicinity of rl = 1. (In fact, 
in this region the ‘distance’ d in (2.5) is forced to be of order of unity.) The result 
near rl = r, and the non-trivial fixed points are free from this difficulty. 

The non-trivial fixed point for the Rlattice is at ( T i )  = (0.2400,0.3153,0.3843,0.1815). 
The critical index is obtained from the linearised renormalisation group equation near 
the fixed point. We find the relevant eigenvalue to be A,,, = 1.4510, which yields 

In 7 
In Amax 

vp=-- - 1.2928. (3.8) 

(Note that a full inflation changes the linear scale by T =  $ - I . )  

The critical lines on the ( k ,  , k,) plane are illustrated in figure 7 for various values 
of k,  and k, .  Their features are quite similar to those of the R lattice, since the bonds 
k l - k ,  correspond to r l - r4 ,  respectively, in their properties of the connectivity. The 
non-trivial fixed point for the KD lattice is at ( k i )  = (0.3843,0.2438,0.2400,0.1578). The 

0 
k i  

1 

k2 

0 
k i  

( b l  

Figure 7. The critical lines on the ( k , ,  k2) plane for the K D  lattice: ( a )  for k, =0,  0.25, 
0.5, 0.75 and 1 when k,=O,  ( 6 )  for k 4 = 0 ,  0.25, 0.5 and 0.75 when k , = O  (for k 4 =  1 ,  the 
critical surface passes the origin). 



4992 H Aoyama and T Odagaki 

critical exponent is the same as (3.8) (for the same reason as in the Ising model 
(Aoyama and Odagaki 1986)). 

4. Concluding remarks 

We studied in this paper the bond percolation in two-dimensional quasi-lattices by 
making use of a real space renormalisation group method. To test the validity of the 
method, we applied it to the square lattice and found the critical percolation probability 
k ,  = 0.423 and the correlation-length critical exponent vp = 1.2079 which are 16% and 
9.5% smaller, respectively, than the values known in the literature. Thus the error in 
the present methods is estimated to be about 10-15%. These values are, however, 
better than or comparable to other estimations based on the real space renormalisation 
group method with similar cell size (Young and Stinchcombe 1975, Stinchcombe and 
Watson 1976). 

The bond percolation in the R lattice was studied recently by computer simulation 
by Lu and Birman (1987). When r ,  = r 2 ,  r3 =0, r 4 = 0 ,  they obtained the critical 
percolation probability 0.483 and the critical exponent 7 = 2.05 and (+ = 0.39 which 
implies vp = 1.346 noting the scaling relation vp = ( T - 1)/20 for two dimensions. Our 
corresponding results, rl = r2 = 0.410 and vp = 1.2928, agree with these values reasonably 
well. These estimates for vp are quite close to the universal value predicted for the 
two-dimensional periodic lattices $ (den Nijs 1979, Eshbach et a1 1981). 

Therefore, our result suggests that the quasi-lattice belongs to the same universality 
class of two-dimensional periodic lattices. 

Appendix 

Typical patterns of the K D  lattice and the R lattice are shown in figure 8. These lattices 
are made of non-periodic tiling using two different tiles as one can easily identify in 

i f f )  l b )  

Figure 8. Typical patterns of two-dimensional quasi-lattices. ( a )  The R lattice and ( b )  the 
K D  lattice. 
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the figure: thin and thick rhombi for the R lattice and kite and dart tiles for the K D  

lattice. When they are tiled, a matching rule must be satisfied. For example, in the R 
lattice thin and thick rhombi are assigned single and double arrows on their edges 
(see figures 4 and 5 )  and the direction and type of arrows must be matched when two 
tiles are abutted. A similar matching rule is required in the K D  lattice (see Gardner 
1977). The vertices of the tilings form quasi-lattices which have the following properties. 

(i) Existence of minimum and maximum in the nearest-neighbour distance. 
(ii) The bond orientational order. 
(iii) The self-similarity. 
(iv) The quasi-periodicity. 
As described in Q 2, the R and K D  lattices are transformed into each other with a 

different length scale by the half-inflation. 
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